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Agelastatin alkaloids	

•  6 Agelastatins A-F isolated so far, differences in substitution pattern	


•  Agelastatin A biological activity:	

–  Singnificant antitumor activity against wide range of tumor cells (in nM range)	

–  Highly toxic towords anthropods (LC50= 1.7 ppm in brine shrimp assay)	

–  Insecticidal against beet army worm and corn root worm	

–  Selectivly inhibits the glycogen synthase kinase-3b, a potential target for the treatment of 

Alzheimer’s disease and bipolar disorder.	


•  Biosynthetically originate from simpler pyrrole-imidazole alkaloids	
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Previous synthetic work: Agelastatin A - 
benchmark for showcasing methodology	


•  10 total syntheses published prior to the title paper	

•  First synthesis: Weinreb 1999, first asymmetric synthesis: Feldman 2002.	


•  In all previous synthesis cyclopentane ring C is set early and the rest of 
molecule is elaborated around it	


•  Ring C contains 4 stereocenters and this highly substituted cyclopentane 
was target for showcasing various methodologies.	


Weinreb: JOC 1998, 63, 7594 and JACS 1999, 121, 
9574.	

Feldman: JACS 2002, 124, 9060 and JOC 2002, 67, 7096.	

Hale: OL 2003, 5, 2927 and OL 2004, 6, 2615.	

Davis: OL 2005, 7, 621 and SC 2009, 39, 1914 (CL in 
Feb. 2005 by Mike Rishel).	

Trost: JACS 2006, 128, 6054 and CEJ 2009, 15, 6910.	

Ichikawa: OL 2007, 9, 2989.	

Wardrop: OL 2009, 11, 1341.	

Chida: OL 2009, 11, 2687.	

Tanaka: OL 2008, 10, 5457 and OL 2009, 11, 3402.	

Du Bois: ACIE 2009, 48, 3802 (CL in May 2009 by 
Melissa).           	
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Weinreb’s synthesis of (±)-Agelastatin A	
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-  The first total synthesis of agelastatin A	

-  Key steps: hetero DA reaction, Sharpless-Kresze allylic amination (new SES reagent) 
and internal Michael addition of pyrrole nitrogen	

-  Why not brominate debromoagelastatin, previously made in Weinreb group?	


JOC 1998, 63, 7594.    JACS 1999, 121, 9574.	




Feldman’s Synthesis of (-)-Agelastatins A 
and B	


-  The first enantioselective total synthesis of (-)-agelastatin A	

-  Cyclopentane core was synthesized using alkylnyliodonium salt mediated cyclization	


JOC 2002, 67, 7096.    JACS 2002, 124, 9060.	
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Trost’s Synthesis of (+)- and (-)-Agelastatin 
A	


-  New methodologies such as Pd-catalyzed asymetric allylic alkylation (AAA) using pyrrole 
as nucleophile and In(OTf)3 catalyzed oxidative aziridine opening using DMSO were 
developed.	

-  Both enantiomers of Agelastatin A were synthesized from the same enantiomer of a 
stereoconducting catalyst.	
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Biosynthesys of Oroidin-Based Pyrrole-
Imidazole Alkaloids	


Ali Al Mourabit and Pierre Potier Eur. J. Org. Chem.  2001, 237.	
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Title Paper: Biosynthetic Hypothesis and Design 
Plan for Total Synthesis of Agelastatins	




Title Paper: Synthesis of (-)-Agelastatin A	
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The Importance of C13 Bromine 
Substituent and Imidazolinone	
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Title Paper: Synthesis of (-)-Agelastatins B-F	
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Conclusions	

•  All known agelastatin alkaloids were synthesized employing 

biosynthetically inspired strategy	


•  “Pre-agelastatin” derivatives were obtained in multi-gram quantities	


•  C13 bromine substitution was critical for the successful C-ring 
cyclization	


•  Agelastatin A was prepared in 1.4 g batch and bilogical and chemical 
studies of that compound are ongoing.	


•  Authors suggest higher probability for biosynthetic introduction of 
C13-bromopyrrole and imidazolone substructures prior to C-ring 
formation and this hypothesis is yet to be experimentally checked. 	



